Note
Click here to download the full example code or to run this example in your browser via Binder
Glass brain plotting in nilearn (all options)#
The first part of this example goes through different options of the
plot_glass_brain
function (including plotting
negative values).
The second part goes through same options but selected of the same glass brain function but plotting is seen with contours.
See Plotting brain images for more plotting functionalities and Section 4.3 for more details about display objects in Nilearn.
Also, see nilearn.datasets.fetch_neurovault_motor_task
for details
about the plotting data and associated meta-data.
Retrieve the data#
Nilearn comes with set of functions that download public data from Internet
Let us first see where the data will be downloaded and stored on our disk:
from nilearn import datasets
print('Datasets shipped with nilearn are stored in: %r' % datasets.get_data_dirs())
Datasets shipped with nilearn are stored in: ['/home/alexis/nilearn_data']
Let us now retrieve a motor task contrast map corresponding to a group one-sample t-test
motor_images = datasets.fetch_neurovault_motor_task()
stat_img = motor_images.images[0]
# stat_img is just the name of the file that we downloaded
stat_img
'/home/alexis/nilearn_data/neurovault/collection_658/image_10426.nii.gz'
Demo glass brain plotting#
By default, plot_glass_brain
uses a display mode
called ‘ortho’ which results in three projections. It is equivalent to
specify display_mode='ortho'
in
plot_glass_brain
. Note that depending on the
value of display_mode
, different display objects are returned. Here,
a OrthoProjector
is returned.
from nilearn import plotting
from nilearn.plotting import plot_glass_brain
# Whole brain sagittal cuts and map is thresholded at 3
plot_glass_brain(stat_img, threshold=3)
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7ff8ed827d00>
The same figure, with a colorbar, can be produced by
setting colorbar=True
.
plot_glass_brain(stat_img, threshold=3, colorbar=True)
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7ff8eabd19f0>
Here, we show how to set a black background, and we only view sagittal and
axial projections by setting display_mode='xz'
, which returns a
XZProjector
.
plot_glass_brain(
stat_img, title='plot_glass_brain', black_bg=True,
display_mode='xz', threshold=3
)
<nilearn.plotting.displays._projectors.XZProjector object at 0x7ff8b90ff6a0>
We can also plot the sign of the activation by setting plot_abs=False
.
Additionally, we only visualize coronal and axial projections by setting
display_mode='yz'
which returns a
YZProjector
.
plot_glass_brain(
stat_img, threshold=0, colorbar=True, plot_abs=False, display_mode='yz'
)
<nilearn.plotting.displays._projectors.YZProjector object at 0x7ff908031690>
Setting plot_abs=True
and display_mode='yx'
(returns a
YXProjector
).
plot_glass_brain(
stat_img, threshold=3, colorbar=True, plot_abs=False, display_mode='yx'
)
<nilearn.plotting.displays._projectors.YXProjector object at 0x7ff8c5fbebf0>
Different projections for the left and right hemispheres#
In the previous section we saw a few projection modes, which are controlled
by setting the argument display_mode
of
plot_glass_brain
. In this section, we will show
some additional possibilities. For example, setting display_mode='lzr'
enables an hemispheric sagittal view. The display object returned is then a
LZRProjector
.
plot_glass_brain(
stat_img, title='plot_glass_brain with display_mode="lzr"',
black_bg=True, display_mode='lzr', threshold=3
)
<nilearn.plotting.displays._projectors.LZRProjector object at 0x7ff907f9c2e0>
display_mode='lyrz'
returns a
LYRZProjector
object.
plot_glass_brain(
stat_img, threshold=0, colorbar=True,
title='plot_glass_brain with display_mode="lyrz"',
plot_abs=False, display_mode='lyrz'
)
<nilearn.plotting.displays._projectors.LYRZProjector object at 0x7ff8ed50a560>
If you are only interested in single projections, you can set
display_mode
to ‘x’ (returns a
XProjector
), ‘y’ (returns a
YProjector
), ‘z’ (returns a
ZProjector
), ‘l’ (returns a
LProjector
), or ‘r’ (returns a
RProjector
).
plot_glass_brain(
stat_img, threshold=0, colorbar=True, title='display_mode="x"',
plot_abs=False, display_mode='x'
)
<nilearn.plotting.displays._projectors.XProjector object at 0x7ff9081637f0>
Demo glass brain plotting with contours and with fillings#
The display objects returned by plot_glass_brain
all inherit from the OrthoProjector
and enable further customisation of the figures.
In this example, we focus on using methods
add_contours
and
title
. First, we
save the display object (here a
LZRYProjector
) into a variable named
display
. Note that we set the first argument to None
since we
want an empty glass brain to plot the statistical maps with
add_contours
.
display = plot_glass_brain(None, display_mode='lzry')
# Here, we project statistical maps
display.add_contours(stat_img)
# and add a title
display.title('"stat_img" on glass brain without threshold')
We can fill the contours by setting filled=True
. Note that we are not
specifying levels here
display = plot_glass_brain(None, display_mode='lzry')
# Here, we project statistical maps with filled=True
display.add_contours(stat_img, filled=True)
# and add a title
display.title('Same map but with fillings in the contours')
Here, we input a specific level (cut-off) in the statistical map. In other words, we are thresholding our statistical map.
We set the threshold using a parameter of method
add_contours
called
levels
which value is given as a list and we choose the color to be red.
display = plot_glass_brain(None, display_mode='lzry')
display.add_contours(stat_img, levels=[3.], colors='r')
display.title('"stat_img" on glass brain with threshold')
Plotting with same demonstration but fill the contours (by setting
filled=True
).
display = plot_glass_brain(None, display_mode='lzry')
display.add_contours(stat_img, filled=True, levels=[3.], colors='r')
display.title('Same demonstration but using fillings inside contours')
Plotting with black background, black_bg
should be set to True
through plot_glass_brain
.
# We can set black background using black_bg=True
display = plot_glass_brain(None, black_bg=True)
display.add_contours(stat_img, levels=[3.], colors='g')
display.title('"stat_img" on glass brain with black background')
Black background plotting with filled in contours.
display = plot_glass_brain(None, black_bg=True)
display.add_contours(stat_img, filled=True, levels=[3.], colors='g')
display.title('Glass brain with black background and filled in contours')
Display contour projections in both hemispheres#
The key argument to vary here is display_mode
for hemispheric plotting.
Here, we set display_mode='lr'
for both hemispheric plots. Note that a
LRProjector
is returned.
display = plot_glass_brain(None, display_mode='lr')
display.add_contours(stat_img, levels=[3.], colors='r')
display.title('"stat_img" on glass brain only "l" "r" hemispheres')
Filled contours in both hemispheric plotting, by adding filled=True
.
display = plot_glass_brain(None, display_mode='lr')
display.add_contours(stat_img, filled=True, levels=[3.], colors='r')
display.title('Filled contours on glass brain only "l" "r" hemispheres')
With positive and negative signs of activations with plot_abs
in
plot_glass_brain
.
By default parameter plot_abs
is True
and sign of activations
can be displayed by changing plot_abs
to False
. Note that we also
specify display_mode='lyr'
which returns a
LYRProjector
display object.
display = plot_glass_brain(None, plot_abs=False, display_mode='lyr')
display.add_contours(stat_img)
display.title("Contours with both sign of activations without threshold")
Now, adding filled=True
to get positive and negative sign activations
with fillings in the contours.
display = plot_glass_brain(None, plot_abs=False, display_mode='lyr')
display.add_contours(stat_img, filled=True)
display.title(
"Filled contours with both sign of activations without threshold"
)
Displaying both signs (positive and negative) of activations with threshold
meaning thresholding by adding an argument levels
in method
add_contours
.
We give two values through the argument levels
which corresponds to the
thresholds of the contour we want to draw: One is positive and the other one
is negative. We give a list of colors
as argument to associate a
different color to each contour. Additionally, we also choose to plot
contours with thick line widths. For linewidths
, one value would be
enough so that same value is used for both contours.
import numpy as np
display = plot_glass_brain(None, plot_abs=False, display_mode='lzry')
display.add_contours(
stat_img, levels=[-2.8, 3.], colors=['b', 'r'], linewidths=4.
)
display.title('Contours with sign of activations with threshold')
Same display demonstration as above but adding filled=True
to get
fillings inside the contours.
Unlike in previous plot, here we specify each sign at a time. We call negative values display first followed by positive values display.
First, we fetch our display object with same parameters used as above. Then, we plot negative sign of activation with levels given as negative activation value in a list. Upper bound should be kept to -infinity. Next, using the same display object, we plot positive sign of activation.
display = plot_glass_brain(None, plot_abs=False, display_mode='lzry')
display.add_contours(
stat_img, filled=True, levels=[-np.inf, -2.8], colors='b'
)
display.add_contours(
stat_img, filled=True, levels=[3.], colors='r'
)
display.title('Now same plotting but with filled contours')
# Finally, displaying them
plotting.show()
Total running time of the script: ( 0 minutes 23.703 seconds)
Estimated memory usage: 9 MB