Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.compute_fixed_effects#
- nilearn.glm.compute_fixed_effects(contrast_imgs, variance_imgs, mask=None, precision_weighted=False)[source]#
Compute the fixed effects, given images of effects and variance
- Parameters
- contrast_imgslist of Nifti1Images or strings
The input contrast images.
- variance_imgslist of Nifti1Images or strings
The input variance images.
- maskNifti1Image or NiftiMasker instance or None, optional
Mask image. If None, it is recomputed from contrast_imgs.
- precision_weightedBool, optional
Whether fixed effects estimates should be weighted by inverse variance or not. Default=False.
- Returns
- fixed_fx_contrast_imgNifti1Image
The fixed effects contrast computed within the mask.
- fixed_fx_variance_imgNifti1Image
The fixed effects variance computed within the mask.
- fixed_fx_t_imgNifti1Image
The fixed effects t-test computed within the mask.
Notes
This function is experimental. It may change in any future release of Nilearn.
Examples using nilearn.glm.compute_fixed_effects
#
Example of explicit fixed effects fMRI model fitting
Example of explicit fixed effects fMRI model fitting