Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.regions.signals_to_img_labels#
- nilearn.regions.signals_to_img_labels(signals, labels_img, mask_img=None, background_label=0, order='F')[source]#
Create image from region signals defined as labels.
The same region signal is used for each voxel of the corresponding 3D volume.
labels_img, mask_img must have the same shapes and affines.
- Parameters
- signals
numpy.ndarray
2D array with shape: (scan number, number of regions in labels_img).
- labels_imgNiimg-like object
See http://nilearn.github.io/manipulating_images/input_output.html Region definitions using labels.
- mask_imgNiimg-like object, optional
Boolean array giving voxels to process. integer arrays also accepted, In this array, zero means False, non-zero means True.
- background_labelnumber, optional
Label to use for “no region”. Default=0.
- order
str
, optional Ordering of output array (“C” or “F”). Default=”F”.
- signals
- Returns
- img
nibabel.nifti1.Nifti1Image
Reconstructed image. dtype is that of “signals”, affine and shape are those of labels_img.
- img
See also
nilearn.regions.img_to_signals_labels
nilearn.regions.signals_to_img_maps
nilearn.maskers.NiftiLabelsMasker
Signal extraction on labels images e.g. clusters