Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

nilearn.datasets.fetch_icbm152_2009#

nilearn.datasets.fetch_icbm152_2009(data_dir=None, url=None, resume=True, verbose=1)[source]#

Download and load the ICBM152 template (dated 2009).

The default template of fMRIPrep is the asymmetrical ICBM152 2009, release c (MNI152NLin2009cSAsym). The NiLearn template is asymmetrical ICBM152 2009, release a. If you wish to use the exact same release as fMRIPrep, please refer to TemplateFlow (https://www.templateflow.org/).

For more information, see 1, 2, and 3.

Parameters
data_dirpathlib.Path or str, optional

Path where data should be downloaded. By default, files are downloaded in home directory.

urlstr, optional

URL of file to download. Override download URL. Used for test only (or if you setup a mirror of the data). Default=None.

resumebool, optional

Whether to resume download of a partly-downloaded file. Default=True.

verboseint, optional

Verbosity level (0 means no message). Default=1.

Returns
datasklearn.datasets.base.Bunch

Dictionary-like object, interest keys are:

  • “t1”: str, Path to T1-weighted anatomical image

  • “t2”: str, Path to T2-weighted anatomical image

  • “t2_relax”: str, Path to anatomical image obtained with the T2 relaxometry

  • “pd”: str, Path to the proton density weighted anatomical image

  • “gm”: str, Path to grey matter segmented image

  • “wm”: str, Path to white matter segmented image

  • “csf”: str, Path to cerebrospinal fluid segmented image

  • “eye_mask”: str, Path to eye mask useful to mask out part of MRI images

  • “face_mask”: str, Path to face mask useful to mask out part of MRI images

  • “mask”: str, Path to whole brain mask useful to mask out skull areas

See also

nilearn.datasets.load_mni152_template

to load MNI152 T1 template.

nilearn.datasets.load_mni152_gm_template

to load MNI152 grey matter template.

nilearn.datasets.load_mni152_wm_template

to load MNI152 white matter template.

nilearn.datasets.load_mni152_brain_mask

to load MNI152 whole brain mask.

nilearn.datasets.load_mni152_gm_mask

to load MNI152 grey matter mask.

nilearn.datasets.load_mni152_wm_mask

to load MNI152 white matter mask.

nilearn.datasets.fetch_icbm152_brain_gm_mask

to fetch only ICBM grey matter mask.

Notes

For more information about this dataset’s structure: http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

The original download URL is http://www.bic.mni.mcgill.ca/~vfonov/icbm/2009/mni_icbm152_nlin_sym_09a_nifti.zip

TemplateFlow repository for ICBM152 2009

Symmetric: https://github.com/templateflow/tpl-MNI152NLin2009cSym

Asymmetric: https://github.com/templateflow/tpl-MNI152NLin2009cSAsym

References

1

Vladimir Fonov, Alan C. Evans, Kelly Botteron, C. Robert Almli, Robert C. McKinstry, and D. Louis Collins. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1):313–327, 2011. URL: https://www.sciencedirect.com/science/article/pii/S1053811910010062, doi:https://doi.org/10.1016/j.neuroimage.2010.07.033.

2

VS Fonov, AC Evans, RC McKinstry, CR Almli, and DL Collins. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47(Supplement 1):S102, 2009. doi:10.1016/S1053-8119(09)70884-5.

3

D. Louis Collins, Alex P. Zijdenbos, Wim F. C. Baaré, and Alan C. Evans. Animal+insect: improved cortical structure segmentation. In Attila Kuba, Martin Šáamal, and Andrew Todd-Pokropek, editors, Information Processing in Medical Imaging, 210–223. Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

Examples using nilearn.datasets.fetch_icbm152_2009#

Visualizing global patterns with a carpet plot

Visualizing global patterns with a carpet plot

Visualizing global patterns with a carpet plot
Visualizing 4D probabilistic atlas maps

Visualizing 4D probabilistic atlas maps

Visualizing 4D probabilistic atlas maps
Voxel-Based Morphometry on OASIS dataset

Voxel-Based Morphometry on OASIS dataset

Voxel-Based Morphometry on OASIS dataset