Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_coords_dosenbach_2010#
- nilearn.datasets.fetch_coords_dosenbach_2010(ordered_regions=True, legacy_format=True)[source]#
Load the Dosenbach et al. 160 ROIs. These ROIs cover much of the cerebral cortex and cerebellum and are assigned to 6 networks.
See 1.
- Parameters
- ordered_regions
bool
, optional ROIs from same networks are grouped together and ordered with respect to their names and their locations (anterior to posterior). Default=True.
- legacy_format
bool
, optional If set to
True
, the fetcher will return recarrays. Otherwise, it will return pandas dataframes. Default=True.
- ordered_regions
- Returns
- data
sklearn.utils.Bunch
Dictionary-like object, contains:
‘rois’:
numpy.recarray
, rec array with the coordinates of the 160 ROIs in MNI space. Iflegacy_format
is set toFalse
, this is apandas.DataFrame
.‘labels’:
numpy.ndarray
ofstr
, list of label names for the 160 ROIs.‘networks’:
numpy.ndarray
ofstr
, list of network names for the 160 ROI.‘description’:
str
, description of the dataset.
- data
References
- 1
Nico U. F. Dosenbach, Binyam Nardos, Alexander L. Cohen, Damien A. Fair, Jonathan D. Power, Jessica A. Church, Steven M. Nelson, Gagan S. Wig, Alecia C. Vogel, Christina N. Lessov-Schlaggar, Kelly Anne Barnes, Joseph W. Dubis, Eric Feczko, Rebecca S. Coalson, John R. Pruett, Deanna M. Barch, Steven E. Petersen, and Bradley L. Schlaggar. Prediction of individual brain maturity using fmri. Science, 329(5997):1358–1361, 2010. URL: https://science.sciencemag.org/content/329/5997/1358, arXiv:https://science.sciencemag.org/content/329/5997/1358.full.pdf, doi:10.1126/science.1194144.
Examples using nilearn.datasets.fetch_coords_dosenbach_2010
#
Extract signals on spheres and plot a connectome