Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

nilearn.datasets.fetch_coords_power_2011#

nilearn.datasets.fetch_coords_power_2011(legacy_format=True)[source]#

Download and load the Power et al. brain atlas composed of 264 ROIs.

See 1.

Parameters
legacy_formatbool, optional

If set to True, the fetcher will return recarrays. Otherwise, it will return pandas dataframes. Default=True.

Returns
datasklearn.utils.Bunch

Dictionary-like object, contains:

  • ‘rois’: numpy.recarray, rec array containing the coordinates of 264 ROIs in MNI space. If legacy_format is set to False, this is a pandas.DataFrame.

  • ‘description’: str, description of the atlas.

References

1

Jonathan D. Power, Alexander L. Cohen, Steven M. Nelson, Gagan S. Wig, Kelly Anne Barnes, Jessica A. Church, Alecia C. Vogel, Timothy O. Laumann, Fran M. Miezin, Bradley L. Schlaggar, and Steven E. Petersen. Functional network organization of the human brain. Neuron, 72(4):665–678, Nov 2011. URL: https://doi.org/10.1016/j.neuron.2011.09.006, doi:10.1016/j.neuron.2011.09.006.

Examples using nilearn.datasets.fetch_coords_power_2011#

Extract signals on spheres and plot a connectome

Extract signals on spheres and plot a connectome

Extract signals on spheres and plot a connectome