Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_mixed_gambles#
- nilearn.datasets.fetch_mixed_gambles(n_subjects=1, data_dir=None, url=None, resume=True, return_raw_data=False, verbose=1)[source]#
Fetch Jimura “mixed gambles” dataset.
See 1.
- Parameters
- n_subjects
int
, optional The number of subjects to load. If
None
is given, all the subjects are used. Default=1.- data_dir
pathlib.Path
orstr
, optional Path where data should be downloaded. By default, files are downloaded in home directory.
- url
str
, optional URL of file to download. Override download URL. Used for test only (or if you setup a mirror of the data). Default=None.
- resume
bool
, optional Whether to resume download of a partly-downloaded file. Default=True.
- verbose
int
, optional Verbosity level (0 means no message). Default=1.
- return_raw_data
bool
, optional If
False
, then the data will transformed into an(X, y)
pair, suitable for machine learning routines.X
is a list ofn_subjects * 48
Nifti1Image
objects (where 48 is the number of trials), andy
is an array of shape(n_subjects * 48,)
. Default=False.
- n_subjects
- Returns
- data
Bunch
Dictionary-like object, the attributes of interest are:
‘zmaps’:
list
ofstr
Paths to realigned gain betamaps (one nifti per subject).‘gain’:
list
ofNifti1Image
orNone
Ifmake_Xy
isTrue
, this is a list ofn_subjects * 48
Nifti1Image
objects, else it isNone
.‘y’:
ndarray
of shape(n_subjects * 48,)
orNone
Ifmake_Xy
isTrue
, then this is andarray
of shape(n_subjects * 48,)
, else it isNone
.
- data
References
- 1
Koji Jimura and Russell A. Poldrack. Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4):544–552, 2012. Multivoxel pattern analysis and cognitive theories. URL: https://www.sciencedirect.com/science/article/pii/S0028393211005070, doi:https://doi.org/10.1016/j.neuropsychologia.2011.11.007.
Examples using nilearn.datasets.fetch_mixed_gambles
#
FREM on Jimura et al “mixed gambles” dataset.