Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.datasets.fetch_mixed_gambles#
- nilearn.datasets.fetch_mixed_gambles(n_subjects=1, data_dir=None, url=None, resume=True, return_raw_data=False, verbose=1)[source]#
Fetch Jimura “mixed gambles” dataset.
See 1.
- Parameters
- n_subjects
int, optional The number of subjects to load. If
Noneis given, all the subjects are used. Default=1.- data_dir
pathlib.Pathorstr, optional Path where data should be downloaded. By default, files are downloaded in home directory.
- url
str, optional URL of file to download. Override download URL. Used for test only (or if you setup a mirror of the data). Default=None.
- resume
bool, optional Whether to resume download of a partly-downloaded file. Default=True.
- verbose
int, optional Verbosity level (0 means no message). Default=1.
- return_raw_data
bool, optional If
False, then the data will transformed into an(X, y)pair, suitable for machine learning routines.Xis a list ofn_subjects * 48Nifti1Imageobjects (where 48 is the number of trials), andyis an array of shape(n_subjects * 48,). Default=False.
- n_subjects
- Returns
- data
Bunch Dictionary-like object, the attributes of interest are:
‘zmaps’:
listofstrPaths to realigned gain betamaps (one nifti per subject).‘gain’:
listofNifti1ImageorNoneIfmake_XyisTrue, this is a list ofn_subjects * 48Nifti1Imageobjects, else it isNone.‘y’:
ndarrayof shape(n_subjects * 48,)orNoneIfmake_XyisTrue, then this is andarrayof shape(n_subjects * 48,), else it isNone.
- data
References
- 1
Koji Jimura and Russell A. Poldrack. Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 50(4):544–552, 2012. Multivoxel pattern analysis and cognitive theories. URL: https://www.sciencedirect.com/science/article/pii/S0028393211005070, doi:https://doi.org/10.1016/j.neuropsychologia.2011.11.007.